Fast and robust fixed-point algorithms for independent component analysis
نویسندگان
چکیده
منابع مشابه
Fast and robust fixed-point algorithms for independent component analysis
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon's information-theoretic approach and the projection pursuit approach. Using maximum entropy approximations ...
متن کاملA Fast Fixed-Point Algorithm for Independent Component Analysis
We introduce a novel fast algorithm for Independent Component Analysis, which can be used for blind source separation and feature extraction. It is shown how a neural network learning rule can be transformed into a xed-point iteration, which provides an algorithm that is very simple, does not depend on any user-deened parameters, and is fast to converge to the most accurate solution allowed by ...
متن کاملA family of fixed-point algorithms for independent component analysis
Independent Component Analysis (ICA) is a statistical signal processing technique whose main applications are blind source separation, blind deconvolution, and feature extraction. Estimation of ICA is usually performed by optimizing a 'contrast' function based on higher-order cumulants. In this paper, it is shown how almost any error function can be used to construct a contrast function to perf...
متن کاملFast Algorithms for Bayesian Independent Component Analysis
Fast algorithms for linear blind source separation are developed. The fast convergence is rst derived from low-noise approximation of the EM-algorithm given in 2], to which a modiication is made that leads as a special case to the FastICA algorithm 5]. The modii-cation is given a general interpretation and is applied to Bayesian blind source separation of noisy signals.
متن کاملA Fast Fixed-Point Algorithm for Independent Component Analysis of Complex Valued Signals
Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article, it is assumed that the original, complex valued source signals are mutually statistically independent, and the problem is solved by the independent component analysis (ICA) model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 1999
ISSN: 1045-9227,1941-0093
DOI: 10.1109/72.761722